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ABSTRACT Nonlinear mechanical systems promise broadband
resonance and instantaneous hysteretic switching that can be used
for high sensitivity sensing. However, to introduce nonlinear
resonances in widely used microcantilever systems, such as AFM
probes, requires driving the cantilever to an amplitude that is too
large for any practical applications. We introduce a novel design for a
microcantilever with a strong nonlinearity at small cantilever

oscillation amplitude arising from the geometrical integration of a
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single BN nanotube. The dynamics of the system was modeled theoretically and confirmed experimentally. The system, besides providing a practical design

of a nonlinear microcantilever-based probe, demonstrates also an effective method of studying the nonlinear damping properties of the attached

nanotube. Beyond the typical linear mechanical damping, the nonlinear damping contribution from the attached nanotube was found to be essential for

understanding the dynamical behavior of the designed system. Experimental results obtained through laser microvibrometry validated the developed

model incorporating the nonlinear damping contribution.
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he advances in nanotechnology in
the past decade have brought the
development of various nanomecha-
nical systems, among which nanomechani-
cal resonators represent notable ones. Nano-
resonators fabricated by integrating com-
ponents such as carbon nanotubes and
graphene membranes have readily shown
high resonant frequency and high Q-factor
performance owing to the nanoscale di-
mension, high mechanical strength and
low density of the nanostructures serving
as the critical mechanical elements.' As a
result, various related devices have been
developed for many applications, such as
for ultrasensitive mass detection,®™* atom-
absorption sensing,” and ultrahigh-frequency
electrical circuitry,®” as well as for the funda-
mental study of the quantum limit of vibration
modes 8 1°
While most of the current studies on
nanomechanical resonators focus on the
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study of linear resonance that takes advan-
tage of the unique mechanical and linear
dynamic properties of nanowires and nano-
tubes, in this study we introduce a uniquely
designed microcantilever system with a
strong nonlinearity in the form of an at-
tached nanotube. Although the nonlinear
dynamic behavior can be conveniently
realized in a micro/nanocantilever system
through various physical mechanisms (e.g.,
nonlinear electrostatic actuation), in the
present work the realization of intrinsic
nonlinearity in the absence of any non-
linear external potential is caused by large-
amplitude oscillations of the micro/nano-
cantilever system beyond the regime of
validity of linearly elastic response. Our aim
is to develop a typical microcantilever system
in dimensions and operating conditions
similar to those widely used in scanning
probe microscopy but with the important
(and distinctive) added feature of strongly
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Figure 1. Fabricated nonlinear microcantilever and lumped-parameter model. (a) Scanning electron microscope image of the
fabricated device. The microcantilever structure is 120 um long, 40 um wide and 2 um thick, whereas the inner paddle is 75 um
long and 25 um wide. The inset shows the attached BN nanotube, whose diameter and suspended length are 120 nm and
4 um, respectively. (b) Simplified lumped-parameter model for the device. m denotes the effective mass of the system, and k;
and ¢, represent the linear effective stiffness and the linear damping coefficient of the microcantilever, respectively. k, and ¢,
are parameters arising from the nanotube attachment, standing for the axial stiffness and the viscous damping coefficient of
the BN nanotube, respectively. The system is initially at the equilibrium position (denoted by a gray dashed line), and it moves
by the displacement x once the system is subjected to the external force (to a configuration denoted by black dashed line).
Consequently, the force acting on k; and ¢, changes linearly with x, whereas the vertical portion of the force acting on k, and
¢, changes in accordance to the relation between x and 6, resulting in nonlinearity induced by the geometrical configuration

and the kinematics.

nonlinear dynamic behavior leading to broadband
resonance even at relatively small drive amplitudes.
Figure 1a shows the scanning electron microscope
(SEM) images of the nonlinear microcantilever fabri-
cated for incorporating significant geometrical non-
linearity. An inner paddle was carved out in a rectan-
gular cantilever structure to create an inner cantilever
having its free end close to the fixed base of the overall
structure. It is expected (and later demonstrated in our
modeling result) that when the microcantilever system
is driven to resonate near one of its bending modal
frequencies, the free end of the inner paddle can
exhibit a large vertical (out-of-plane) displacement
relative to the fixed base located just across a small
gap. To introduce intentional strong nonlinearity, a
single BN nanotube is attached across this gap as
shown in the inset in Figure 1a. This local modification
of the microcantilever structure alters the relation
between the overall force acting on the structure and
the resulting displacement, and it introduces strong
geometric and kinematic nonlinearity due to the in-
volvement of the axial stretching of the nanotube in
the dynamic mechanical resonance of the system.'"'?

In the following, we show by employing both ex-
periment and modeling that both the geometry of the
system configuration and the kinematics of the system
are responsible for the nonlinear dynamic behavior of
the system. We further discover that in order to
account for the observed mechanical damping beha-
vior of the system, we must include the consideration
of the nonlinear damping property, beside the typical
linear damping property, of the nanotube in our model
development. Indeed, the geometric nonlinearity
of the dynamic response amplifies the nonlinear
damping associated with the tensile stretching of the
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nanotube, and manifests it in the overall nonlinear
damping behavior of the whole system. We show that
the existence of this nonlinear damping behavior,
which is amplitude-dependent, results in the narrow-
ing of the broadband resonance of this nonlinear
microcantilever system. The designed microcantilever
system can thus both serve as a practical nonlinear
resonance system for sensing-related applications and
work as a testing platform for directly studying the non-
linear damping behavior of individual nanostructures.
Modeling. Figure 1b represents the simplified, lumped-
parameter model of the nonlinear microcantilever
system. Considering that the microcantilever structure
is geometrically large compared to the attached nano-
tube, the contribution of the nanotube mass to the
overall mass of the system is neglected, and it is
assumed that the nanotube is merely subjected to
longitudinal deformation; it is noted that the nanotube
is relatively soft in transverse deformation but rela-
tively stiff in axial deformation. In the model, the
vertically attached parallel spring and damper repre-
sent the microcantilever structure in its second (linear)
bending mode in the absence of the nanotube attach-
ment. The nanotube is modeled as a massless system
of a linear spring in parallel with a viscous damper,
which is attached horizontally between the mass and
the ground. Here, the point near the base where the
nanotube is anchored is modeled as the rigid ground
because that point is nearly stationary. The mass
moves along the x-axis, denoting the out-of-plane
displacement of the free end of the inner paddle. As
the mass moves in the x-direction, the magnitude of
the force T exerted on the microcantilever by the
horizontally attached nanotube is T = k,0 + czé, where
J is the axial deformation of the nanotube, k is the
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linear stiffness, and c, relates to the viscous property of
the nanotube. The vertical component of the force T
(which represents the transverse force applied to the
microcantilever), ie, T sin 6, is a function of 6 as
indicated in the figure. As 6 is relatively small, the
vertical component of the force can be expressed as T
sin 0 ~ (ko/2L%)x® + (co/L2)x*x, which includes a cubic
term dependent on x (the amplitude) in the absence of
the typical linear dependence on x that leads to the
expected pure geometric nonlinearity, and a term
associated with nonlinear damping originating from
the viscoelastic behavior of the nanotube that leads to
damping nonlinearities as we will show later. The
equation of motion of the lumped-parameter model
can then be expressed in the following dimensionless
form (see Supporting Information Section A for the
detailed derivation):

2"+ 8 +E22)7 42402 = gocosQr (1)

Here z is the normalized vertical displacement, &; and
&5 are the normalized linear and nonlinear damping
coefficients, respectively, and o is the normalized non-
linear stiffness coefficient. The right-hand side is the
applied force, where go and 2 are the normalized force
and driving frequency, respectively. The approximate
analytical expression for the frequency-amplitude de-
pendence of the dynamics of eq 1 can be derived by a
perturbation approach'® and can be written as (refer to
Supporting Information Sections B and D for its
derivation):

2 3 42 2 2 _ (9o ?
geﬁ+(a SQASS ) }Ass = (2) (2)

where ¢ is the frequency detuning parameter (i.e.,, Q =
1 4 €0) and A, is the steady-state amplitude. Here we
define an effective damping coefficient &4 through

& 1(1 1) 1
= BAlt = (=—+—) = 3
geff §1+8 s 2 QO+QnI 2Qeff ()

where Q, is the Q-factor for the linear damping term,
Qni'/2 is the damping effect contributed by the non-
linear damping effect, and Qu/2 is the representative
overall damping of the system. It should be noted that
Q.1 and Q¢ represent the nonlinear and overall effec-
tive Q-factors, respectively, adopted from the general
linear concept of Q-factor (i.e., Qo= 1/(2&;)), in order to
obtain a better quantitative measure of the contribu-
tion of the nonlinear damping term to the overall
dissipation, compared to the linear damping term
which is expected to persist in the dynamics indepen-
dent of the energy and pressure level. In our system, Qg
arises from the viscous effect exerted on the micro-
cantilever by the surrounding gaseous environment
and the intrinsic damping of the beam itself, whereas
Q. arises due to geometric and kinematic nonlinea-
rities; that is, it originates from the intrinsic nonlinear
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Figure 2. Nonlinear dynamical steady state response of the
microcantilever with the attached BN nanotube. The fre-
quency response spectrum is acquired with V,, = 1.5V ata
vacuum pressure of 4.5 mTorr. The red circles denote
data points acquired when the frequency was swept up-
ward (forward sweep), and the blue triangles downward
(backward sweep). Because of the presence of the nonlinear
stiffness, the system possesses two stable branches (i.e.,
bistability) and jump phenomena occur as shown by the
blue and the red arrows, resulting in nonlinear hysteresis.
The black line is the analytical solution based on the
extracted o, and is fitted onto the experimental measure-
ment to extract Q.¢, Which is found to be 3036 (.4 =1.65 x
104, whereas Q, at Vpp = 0.1 V under the same vacuum
pressure is 5847 (§; = 8.55 x 107°). The inset shows the
corresponding nonlinear resonance curves at the same
pressure level, and as the excitation amplitude was set to
0.1, 0.5, 1.0, 1.25, and 1.5 V. The amplitudes at the drop
frequencies are fitted by the red line (the backbone curve),
resulting in 0. = 8.52 x 1077,

damping characteristic of the attached nanotube dur-
ing the oscillation.

RESULTS

Figure 2 shows the experimentally acquired re-
sponse spectrum for a microcantilever system driven
with an AC excitation amplitude of 1.5 V and at a
vacuum pressure P of 4.5 mTorr. Note that our initial
measurement of the first two bending modes of the
system revealed that the free end of the inner paddle
produced greater displacement relative to the neigh-
boring point across the gap in the second bending
mode than that in the first bending mode when driven
with the same V,,,. We thus chose the second bending
mode in our study in order to involve the stronger
geometric nonlinearity due to the tensile stretching of
the nanotube. As seen from the acquired response
spectrum, abrupt transitions are observed between the
upper and lower stable branches as a result of the
nonlinear hysteresis, indicating the existence of strong
geometric stiffness nonlinearity induced by the nano-
tube attachment.

The experimentally obtained results were compared
with the results from the model developed previously.
The inset of Figure 2 shows the measured response
curve at increasing excitation amplitude V. With the
increase of V,,, the frequency band of resonant opera-
tion widens, and the drop frequency increases. The
amplitude values at the drop frequency in these
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response curves fit precisely into the so-called 'back-
bone' curve, Ay, = (80/30)"?, derived from eq 2 when
all dissipative terms are set to zero and the dynamic
system is Hamiltonian. The nonlinear stiffness constant
o and linearized resonant frequency f, in eq 1 were
obtained through this fitting, which gave o = 8.52 x
1077 and f, = 273.046 kHz. We then fit the whole
response curve as shown in Figure 2a with our model
result (i.e., eq 2). The dimensionless force constant, g,
was extracted from fitting the response curve acquired
at an ambient pressure environment (P = 750 Torr),
where the nonlinear damping effect was negligible,
because the amplitude of oscillation of the microcan-
tilever was small due to strong (linear) viscous damp-
ing caused by the surrounding gaseous environment
and intrinsic damping; in this case go is measured to be
1.88 x 1072 at a drive amplitude of V,, = 1.5 V. The
effective damping coefficient was found to be & =
1.65 x 10~ * (Qesr= 3036) by fitting eq 2 to the response
curve acquired at a vacuum pressure of 4.5 mTorr and
at an excitation amplitude of 1.5 V (see the Supporting
Information Sections C and D for the detailed descrip-
tion of the parameter extraction). The fitting produced
response curves that matched the experimental result
quite well as shown in Figure 2a.

We performed similar fitting procedures to extract
the effective Q factor for a series of response curves
acquired at different vacuum pressures and at different
excitation amplitudes. The results are summarized in
Figure 3a, in which we plot Qg as a function of the
vacuum pressure under four different drive amplitudes
Vpp- Qo is defined in eq 3 and represents the contribu-
tion from the linear damping (such as the hydrody-
namic viscous damping and the intrinsic thermoelastic
damping). Q,, as defined in eq 3, represents the
contribution from the nonlinear damping and is an
amplitude-dependent quantity. As expected, Qn' <
Qo' when the device is resonating at small amplitude
and the dynamic response is almost purely linear. For
example, at an excitation of V,, = 0.1V, the maximum
oscillation amplitude reaches only to around a few
nanometers even at high vacuum pressure, Q" is thus
negligible, so Qg ~ Qu. Qq as a function of the vacuum
pressure acquired at a small excitation amplitude (i.e.,
Vpp =0.1V) is plotted in Figure 3a. It is noteworthy that
the variation of Q, reveals the existence of three
distinct linear or nonlinear dissipation regimes for
varying level of vacuum pressure. Starting from the
viscously damped regime at the level of high pressure
(Kn < 0.01, P > ~100 Torr) where the linear dissipa-
tive effects are dominant, to the intermediate regime
(0.01 = Kn =< 10), and consequently transitioning to the
free molecular flow regime as the vacuum pressure
decreases (Kn > 10, P < ~0.1 Torr).?>?* At large excita-
tion amplitudes (where the oscillation amplitude of the
inner cantilever can reach up to around 60 nm), the
effective Q-factor Q.¢ decreases and saturates toward
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Figure 3. Nonlinear damping effect in the microcantilever
with the attached BN nanotube. (a) Q. as a function of vac-
uum pressure. At the low excitation amplitude (V,, =0.1V),
alinear damping response dominates (denoted by the black
line); at higher excitation amplitude, the effective Q-factor
shows saturation toward higher vacuum pressure (depicted
by the red, blue and green solid lines for V,, = 1.5, 3.0 and
5.0 V, respectively), reflecting the contribution of the non-
linear damping Q. (b) Q. plotted against the correspond-
ing Qo at each vacuum pressure. (c) Q" as a function of the
corresponding oscillation amplitude at the drop frequency
(Adrop) When V,, = 1.5 V and the vacuum pressure is varied
from 8 Torr to 4.5 mTorr.

higher vacuum pressure. This deviation of Q. from Qq
is more clearly seen in Figure 3b, where Qs is plotted
against the corresponding Q. For reference, we per-
formed the same measurement on the same micro-
cantilever without the nanotube attachment driven
with the same set of excitation amplitudes under the
same set of vacuum pressures. The extracted Qg is
plotted against Qy as shown in the inset in Figure 3b,
exhibiting a completely linear damping response
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across the full range of the pressure and excitation
amplitude variations, and showing no dependence on
the oscillation amplitude as expected for a linear
resonator.

The results demonstrate the critical importance of
incorporating the nonlinear damping contribution into
our nonlinear microcantilever resonance system. We
proceed to extract the nonlinear damping coefficient
&5 (ie, Qn') based on eq 3. Figure 3c shows the
dependence of the extracted Q' as a function of the
amplitude at the drop frequency (Ag.op) mMeasured
from the acquired response curves at an excitation
amplitude of V,, = 1.5 V and at varying vacuum
pressures. Recalling that Q' = £3A%/4 according to
eq 3, &5 was estimated to be 2.1 x 10~ by fitting the
measured data in Figure 3c. As &5 is directly linked to ¢,
which is associated with the intrinsic viscoelastic prop-
erty of the nanotube, it is reasonably expected that & is
also an intrinsic property and independent of the
dynamics of our microcantilever system. This is con-
firmed by the excellent fit in Figure 3a,b between the
experimental data and the solid fitting curves obtained
by assuming the same estimated value of &3, even
though the experimental data are acquired at varying
vacuum pressures and excitation amplitudes.

The saturation of Q. toward high vacuum pressure
can thus be easily understood from the consideration
of the linear and nonlinear damping coexisting in our
system. Toward high vacuum pressure operation, the
linear damping decreases (or the energy dissipation
by linear damping becomes smaller), which leads
to increase of the oscillation amplitude. However, the
increase of the oscillation amplitude aggravates the
nonlinear damping effect through its amplitude-
dependence. This counterbalance leads to the even-
tual saturation of Q. toward high vacuum pressures.
This Q-factor saturation is also expected to occur in
some recent studies on clamped—clamped nanoreso-
nators,*”'%*~22 3lthough it was not directly reported
in those studies.

The existence of nonlinear damping also affects the
bandwidth of the resonance operation of our nonlinear
microcantilever system. Figure 4 shows the measured
drop frequency (solid symbols), which is the frequency
at which the bistability transition occurs and the
oscillation abruptly transits to the lower stable branch
during the forward frequency sweeping, as a function
of vacuum pressure at various excitation forces. We
define the resonance bandwidth as Af = fq,op — fo. The
analytical estimation of the drop frequency can also be
derived from our model as (see Supporting Informa-
tion Section E),

faop = fo(1+a(l'2E, —T 25,12 (4)

where I''is a nominal parameter depending on &, &5, and
Go. This analytical value of fgrop (We set §3=2.1 x 1077)
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Figure 4. Drop frequency as a function of vacuum pressure.
The drop frequencies (solid symbols) are measured at the
points where the bistability occurs during the upward
frequency sweep for the device operated at different va-
cuum pressure. The solid lines are fitting curves based on
our nonlinear model (i.e., eq 4 with &3 = 2.1 x 1077). The
dashed lines are the corresponding model result when only
the linear damping is included in the modeling.

as a function of the vacuum pressure at different
excitation forces is plotted (as solid lines) in Figure 4,
which again shows an excellent match with the experi-
mental result. The dashed lines in Figure 4 represent
the estimation of the drop frequency variation when
only the linear damping is considered in the model
analysis, in which fyop = fol1 + 30.g3/(32£9)]. This leads
to the infinite increase of the drop frequency and thus
the infinite expansion of the resonance bandwidth to-
ward the higher vacuum pressure (i.e.,, when &; — 0) ;
our experimental measurements clearly are at odds
with this. We can thus obtain the upper limit of the
drop frequency from eq 4 by taking &; — 0, fgrop,max =
fo(1 + 0.950g33E5%3), which is a finite (saturation)
value as long as the nonlinear damping effect exists.
This again validates the importance of the inclusion of
nonlinear damping in our model consideration, espe-
cially at high vacuum pressure.

Although the nonlinear damping effect is proven to
be amplitude-dependent, with the nonlinear damping
force being estimated as £;7°7 based on a viscoelastic
mechanical model of the BN nanotube, it is yet still
possible that there might exist other contributing
factors to this nonlinear damping. As postulated by a
recent study on nanotube resonators based on a single
wall nanotube and graphene sheets, besides the con-
tribution from the viscoelastic property of nano-
structure itself, nonlinear phonon—phonon tunneling
or friction at the clamps might also be significant
factors.?> Some studies even estimated that the con-
tribution from the viscoelastic model can only provide
alower bound for the overall nonlinear damping effect
in such resonators.>° As the exact viscoelastic prop-
erty of a multiwall BN nanotube during an axial
deformation is not available, we instead compare the
nonlinear damping coefficient extracted from our
measurement with an existing value of a single wall
carbon nanotube. By reversing the normalization, the
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nonlinear damping coefficient c; (c; = ¢,/L?) is found to
be 1.2 x 107" kg m~2 s (see Supporting Information
Section H), which turns out to be greater by 3 orders of
magnitude than that of a single wall carbon nanotube,
which is deduced to be 1 x 10* kg m™2 s~ from the
literature.?® This, however, is to be expected as the
multiwall BN nanotube we used in the experiment is
considerably larger than a single wall nanotube, and
more defective; besides, the interlayer sliding interac-
tions might also contribute to its viscoelastic response
in a significant way.?” Nevertheless, an independent
tensile dynamic study of individual BN nanotubes is
clearly called for to quantify the viscoelastic properties
of BN nanotubes.

CONCLUSION

In conclusion, we have introduced a practically
designed microcantilever device with strong nonli-
nearity even at relatively small oscillation amplitudes
below 100 nm operating in absence of a nonlinear
external potential, and developed an analytical model

METHODS

Device Fabrication. The nonlinear microcantilever system was
fabricated by modifying a commercially available AFM cantile-
ver (Mikro-Masch, NSC-14). The inner paddle was carved out
with a focused ion beam (FIB) based machining process. A
multiwalled boron nitride nanotube was then manipulated and
deposited across the gap by nanomanipulation inside an SEM,
and was subsequently fixed on both ends through an electron
beam induced platinum deposition process.

Dynamic Response Acquisition. The fabricated microcantilever
system was mounted on a small piezoelectric stack and actu-
ated by the piezoelectric stack with an applied sinusoidal signal
of amplitude V.. The dynamic response of the microcantilever
system was measured by a laser vibrometer system (Polytec
UHF-120) with the laser light focused on the center of the inner
paddle. During the measurement, the frequency was swept up
and then down to acquire the full response spectrum. To
investigate the effective damping of the overall system
(which, as discussed above, includes both linear and nonlinear
components), the system was placed in a vacuum chamber
where the vacuum pressure (P) was varied from 750 Torr down
to 4.5 mTorr.
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